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ABSTRACT

Matched-Field Processing (MFP) and Matched-Mode Processing (MMP)
are two popular techniques for passively localizing an underwater acoustic
emitter in range and depth. One major drawback of these techniques has been
their sensitivity to uncertainty concerning the acoustic environment. Several
methods of addressing this phenomenon have been proposed in the literature,
with varying degrees of success. Achieving high-quality location estimates
remains a problem except in simple range-independent experiments or
numerical simulations. In this study, we demonstrate an approach for robust,
accurate emitter localization in a highly range-dependent real environment
using MMP. The main factors contributing to successful localization are: 1) use
of the high-resolution Multiple Signal Classification (MUSIC) algorithm, which
performs well even when only a few robust modes can be obtained by mode
filtering; and 2) use of an acoustic propagation model incorporating mode
coupling, which is able to generate accurate replica fields in a strongly range-
dependent environment. A secondary objective of the study was to
demonstrate the application of higher-order statistical estimation techniques
to reduce noise effects. Our results indicate that these techniques show
unacceptable sensitivity to noise- and model-induced estimation errors and
require further refinement before they will be useful in the underwater acoustic

localization problem.
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L. INTRODUCTION

Throughout the history of anti-submarine warfare, there has been
great interest in the use of passive acoustic measurements to localize
submarines. Numerous methods of estimating the Direction-Of-Arrival
(DOA) of acoustic emissions from a target of interest have been developed
over the years for sonar applications. However, these techniques are
inherently incapable of directly determining the range and depth of a target
(emitter), although there are indirect means of determining range by
observing target DOA as a function of time. Because knowledge of range and
depth is so vital in military applications, there has been considerable interest
in developing techniques for direct determination of these parameters. One
such technique, which has attracted considerable attention in recent years, is
a generalization of DOA estimation known as Matched-Field Processing
(MFP), along with a variation on MFP known as Matched-Mode Processing
(MMP).

Because of the similarity between DOA estimation and MFP/MMP,
many of the techniques used in DOA estimation may be generalized for use in
MFP/MMP. Two of the most popular DOA estimation methods—Bartlett and
Minimum-Variance—have been studied extensively in the context of MFP
(although the Minimum-Variance method has not been addressed in MMP)
[Refs. 1, 2, 3, 4, 5, 6]. The MUSIC method has received extensive coverage in
the DOA estimation literature, but relatively scant attention in the MFP
literature [Refs. 7, 8, 9] and no attention in the MMP literature, possibly
because of a perception that it would not perform well in realistic underwater

acoustic environments.




One of the most noteworthy results from MFP/MMP studies to date is
the great sensitivity of the location estimates to uncertain knowledge of the
acoustic environment. Numerous researchers [Refs. 10, 11, 12, 13, 14, 15]
have studied this phenomenon and proposed various methods for addressing
it, with varying degrees of success. The problem remains an open issue.
Because of this sensitivity, and also because of the limited availability of real
data sets, most MFP/MMP research to date has involved either simple range-

independent experiments or numerical simulations.
The objectives of this dissertation are to:

® Demonstrate the application of MFP/MMP to experimental data
obtained in a strongly range-dependent environment during the

1992 Barents Sea Polar Front Experiment [Refs. 16, 17, 18, 19];

e Demonstrate that a coupled-mode propagation model is able to
model the acoustic fields used in MFP/MMP with sufficient

accuracy for high-quality localization estimates;

e Demonstrate that the high resolution of the MUSIC algorithm in
combination with MMP is able to produce accurate location

estimates in a realistic environment; and

e Demonstrate the application of higher-order statistics to the
MFP/MMP problem. Although such methods have received some
attention in the DOA estimation literature [Refs. 20, 21, 22], they
have not yet been applied to MFP/MMP.

Chapter II gives an overview of pertinent background material,

including DOA estimation algorithms, modeling of underwater sound
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propagation, and MFP/MMP theory. In that chapter, we: describe three of the
most popular DOA estimation algorithms—the Bartlett, Minimum-Variance,
and MUSIC methods; review the modeling of the acoustic field via
decomposition into normal modes for both range-dependent and range-
independent environments; discuss the application of higher-order statistics
to DOA estimation; and derive the extension of DOA estimation techniques to
MFP/MMP. Except for the portion regarding application of the MUSIC
algorithm and higher-order statistics to MMP, this chapter contains no
original material. Chapter III gives a brief overview of those features of the
Barents Sea Polar Front Experiment which are relevant to this dissertation,
including the physical characteristics of the channel and a description of the
emitter and receiver. Chapter IV provides additional information concerning

the data analysis procedure; it also presents and interprets the results of the

analysis. Chapter V gives the conclusions reached from the research and

proposes areas for further investigation.







II. BACKGROUND

This chapter provides the framework for our analytical approach. It
includes overviews of the following topics: DOA estimation fundamentals,
including an extensive description of the MUSIC algorithm; application of
higher-order statistics to DOA estimation; normal mode modeling of the

acoustic field; and theoretical foundations of MFP/MMP.

A. DOA ESTIMATION

One of the most fundamental parameters of interest in military
applications is the Direction-of-Arrival (DOA) corresponding to a target of
interest. This parameter is one of the primary outputs of virtually all military
radar and sonar systems. DOA may be expressed in terms of azimuth
(bearing) and/or elevation. Over the years, numerous techniques have been
developed for DOA estimation (for a good overview, see [Ref. 23] and
references therein); the most important of these techniques are discussed
briefly in this chapter. As we will see later, these techniques may be
generalized in a straightforward manner for use in Matched-Field Processing.

1. Signal Model

As is generally the case in signal processing algorithms, DOA
estimation techniques make certain assumptions about the signals being
processed. They assume, in particular, that the sound pressure field in the
underwater acoustic channel may be expressed as a plane wave (i.e., that the
surfaces of constant phase are planar). As we will see later, this assumption
is not true in general, but is useful in many cases of practical interest. We
will also assume that the signal is temporally narrowband with center

frequency w; i.e., that amplitude and phase modulation do not introduce




appreciable amplitude and phase changes over the physical extent (length) of
the receiving array. If a signal does not satisfy this latter condition, the
signal may be decomposed via Fourier techniques into narrowband
components which do satisfy the condition. For the sake of generality, during
most of the background discussions, we will allow the number of emitters to
be arbitrary, even though the presence of a single emitter will be assumed
during all actual data analysis.

For mathematical convenience, we will conduct our analysis using the
complex envelope representation of the signal rather than the real (physical)
signal itself. Thus, if s(t) is the real signal, the corresponding analytic signal

or pre-envelope [Ref. 24] is given by
5(2) = s(¢) + js(t),
where §(t) is the Hilbert transform of s(¢),

5(t)= J: ts—g%dg.

The pre-envelope of a real bandpass signal at center frequency @ may be

determined as follows [Ref. 25]:
e Multiply the real signal s(¢) by the complex carrier exp(jax);

e Pass the resulting signal through a low-pass filter to remove the

component at twice the carrier frequency;
e Multiply the resulting baseband signal by the complex carrier.

All signals appearing in the sequel will be the pre-envelopes of real

narrowband signals unless otherwise indicated. The narrowband assumption




mentioned earlier is equivalent to requiring the complex pre-envelope of the

received signal to be of the form
s(t) = S; exp(jax),
where the (complex) amplitude S, is a slowly varying function of time, i.e.,

S,(t) = S,.(t—i),

v

where [ is the length of the array and v is the speed of sound.

The concept of an array response vector is one that arises often in DOA
estimation and MFP. To illustrate this concept, we consider an arbitrary
receiving array of N elements. We may represent the signal as an N-
dimensional, time-varying, complex vector whose components are the signals
at the individual array elements. For convenience, we will assume that only
the azimuth 6 of the target is of interest, although extension to include
dependence on elevation is straightforward. In DOA estimation, the array
response vector a(f) is defined to be the unit-normalized (i.e., length of
a(0)=1), noise-free, pressure field vector expected (based on the modeling
assumptions) at the receive array given that an emitter is at the angle 6. The
set of a vectors for all possible values of 6 is known as the array manifold.
More generally, a could be a function of parameters other than DOA as well.
For the simple case involving a single emitter, a receiving array of N
identical, omnidirectional elements in an arbitrary geometry and a
narrowband, plane-wave signal with center frequency w, a(6) may be

expressed as




where 7, (a function of 6) represents the time delay seen by the incoming
plane wave between sensor i and sensor 0 and superscript T denotes (non-
conjugate) matrix transpose. In the general case where d emitters are

present, the signal model used in DOA estimation is
p=As+n, (1)

where p=[p,(t) p,(¢) - pN(t)]T and n=[n,(¢) n,(t) - nN(t)]T are
vectors whose elements are the received pressure and noise, respectively, at
each element of the array; s =[s,(t) s,(t) - s, (t)]T is the vector of signals
produced by the d emitters (s,¢)=S,exp(jwt), with S, a complex amplitude,
because of the narrowband assumption); A = [a(91) a(6,) - a(Gd)] is a
matrix whose columns are the array response vectors corresponding to the
DOAs of the d emitters; and ¢ is time. Assuming that the signal and noise are
uncorrelated, the signal-plus-noise covariance matrix R, is then given by
R,=E [ppH]
=AR A" +R, (2)

where R, = E[ss”| and R, = E[nn”]| are the signal and noise covariance
matrices, respectively, superscript H denotes Hermitian (conjugate)
transpose and E denotes statistical expectation. An estimate of R, derived
from the measured data is the fundamental quantity used in virtually all
DOA estimation algorithms studied to date.

2. Algorithms

Numerous signal processing algorithms have been studied in the
context of DOA estimation. Many are fairly obvious generalizations of

techniques used for estimating the spectra of time series.




a. Weighted-sum beamforming

Weighted-sum beamforming (see, for example, [Ref. 26]) is the
most commonly used technique (in practice) for DOA estimation, and is used
in virtually all modern military radar and sonar systems. This technique is
analogous to the Finite Impulse Response (FIR) filters used in time-series
analysis. The output b(¢) of the beamformer is simply a linear combination of

the signals received by the elements of the array,
b(t) = w"p(t),

where w is the vector of weights. The weight vector w is chosen to satisfy a
statistical constraint which is appropriate for the given situation. The

expected value B of the output power of the beamformer is given by

B= E[|b(t)|2] =w/R,w_ (3)

A particular value for w generally produces high gain only in a single look
direction, i.e., for a single value of 6. In practice, multiple look directions are
of interest, so that multiple w vectors are required (this approach is
analogous to the use of a “bank” of matched filters in, for example, active
sonar). Thus, in general, both w and B are functions of 6. The value of 6 for
which B is maximized is taken as the estimated DOA of the emitter; this
value may be obtained by conventional one-dimensional search techniques.
The Bartlett beamformer is a special case of weighted-sum
beamforming in which the weight vectors w are simply the array response
vectors a for all look directions of interest. When the noise is spatially
homogeneous, it can be easily shown that the output of this beamformer has
the highest possible Signal-to-Noise Ratio (SNR) of any weighted-sum

beamformer. This beamformer is analogous to the periodogram [Ref. 27] used

9




in time-series analysis. Since for the Bartlett beamformer w=a(f), the

expected value of the output power of the beamformer is
B(6)=a"(6)R,a(0) 4)

and the DOA estimate is given by

A

6 = argmax a” (0)R a(0).

The Minimum-Variance method (MVM), also (somewhat
misleadingly) known as the “Maximum Likelihood” (ML) beamformer [Refs.
28, 29] selects the beamformer weights to minimize the beamformer output
power, subject to the constraint of unity gain (i.e., zero distortion) in the
desired look direction 6. Formally, w is chosen to
minimize w?R_w

subject to w”a(6) =1,

The effect of this minimization is to produce the lowest array response at
directions that have the strongest signals. Thus, this method ié useful in
reducing the effects of directional noise on beamformer performance. The
required weights may be easily shown (e.g., [Ref. 23]) (using the method of
Lagrange multipliers) to be

__ RJa(s)
¥(0)= T o )R a(e)

p

Substituting into (3) and simplifying gives a beamformer output power of

B(6)= : (5)

For a comparison of the performance of the Bartlett and MVM techniques,
see Lacoss [Ref. 29].

10
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b. MUSIC

The MUSIC (for MUltiple SIgnal Classification) method [Refs.
30, 31, 32] is one of the first and probably the most widely studied of a class
of techniques which address the DOA estimation problem from a geometric
perspective; such methods offer potentially large imprdvements in resolution
with respect to beamforming [Ref. 23]. Because MUSIC is central to the
investigations of this dissertation, a full discussion of it is provided in the
sequel. This discussion will attempt to develop an intuitive understanding of
the algorithm rather than to provide a rigorous proof of its methods.

Signal Subspace. Figure 1 is a geometric illustration of the
behavior of the received signal vector p(¢) due to d emitters at various DOAs.
The coordinate axes represent the responses of the N sensors. The
components of the vector p are the outputs of the individual sensors and are
functions of time. As time progresses, the tip of p then sweeps out a curve as
shown in the figure. Due to obvious limitations, our illustrations can show at
most N=3 and will show sensor outputs as real. These limitations will not

adversely affect the illustration of key concepts.

Sensor 3

Sensor 2

Sensor 1
Figure 1: Behavior of signal vector
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Now consider an example involving a single emitter (d=1; Figure
2). For this case, as time progresses, each component of p is multiplied by the
same time-dependent phase factor. The (complex) magnitude of p changes,
but its direction does not. Therefore, the “curve” swept out by p in this case is

a straight line passing through the origin.

Sensor 3

p(ta)

P(t 1)

Sensor 2

Sensor 1
Figure 2: Signal Subspace (d=1)
Next consider an example involving two emitters (d=2) at angles
0, and 6, (Figure 3). For this case, p is the vector sum of contributions from

the individual signals; specifically,

p = s,(t)a(6,)+s,(¢)a(6,). (6)

These contributions s,(¢)a(6,) are vectors whose magnitude

varies with time, but whose direction is fixed by a(6.). Since the two vectors
are multiplied by different time-varying phase factors s,t)=S,exp(jax)
(provided that the slowly varying complex amplitudes S, are not perfectly
correlated), their sum p sweeps out a curve which is confined to a plane

passing through the origin.
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In general, for d emitters, the tip of the received signal vector p
sweeps out a curve which is confined to a d-dimensional subspace of ¢ . This
subspace is known as the signal subspace. Intuitively, then, the number of
emitters could be determined by measuring the dimension of the signal

subspace. We will show later how this can be done.

Sensor 2

Sensor 1
Figure 3: Signal Subspace (d=2)

Array Manifold. Figure 4 illustrates an array manifold, i.e.,
the locus of the array response vectors a(6) for all possible values of 6. Note
that, by definition, a is independent of time, so that time does not participate
in this illustration. In practice, it is not necessary to have an analytical
expression for a(8); we can instead determine it experimentally at a finite
number of points, store the results, and recall them when desired

(interpolaiting when necessary).
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It may happen that the array manifold “runs over itself” (i.e., the
mapping a(6) from the interval 0 to 27 into € is not one-to-one). In such a
case, the array is said to have an ambiguity. Such an ambiguity is not the
only kind possible. For example, when the a vectors corresponding to 3
different DOAs lie in a single plane, the array also has an ambiguity (for
reasons which may not be obvious at this point). In general, when the a
vectors corresponding to n+1 different DOAs lie in a subspace of dimension n

or less, the array is said to have a rank n ambiguity.

Sensor 3

a®,)

Sensor 2

Sensor 1
Figure 4: Array manifold

DOA Determination. For the case of one emitter, it is clear
that the array response a corresponding to the emitter DOA lies in the (1-
dimensional) signal subspace illustrated in Figure 2. In order to determine
the DOA, we would observe the behavior of the signal vector p (if no noise
were present) to determine the signal subspace and find the single unit vector
that spans the subspace. This unit vector represents a point on the array

manifold corresponding to the angle of the emitter. We would then invert the

14
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mapping a(6) (which is one-to-one unless the array has an ambiguity) to
determine the DOA 6.

Now consider the case of two emitters and recall that the signal
vector p is the sum of (vector) contributions from the individual emitters (6).
At any time ¢, these contributions are scalar multiples of the a vectors
corresponding to the two emitter DOAs. Thus, the signal subspace is spanned
by two vectors a(f,) and a(6,) which correspond to the points where the array
manifold intersects the signal subspace (Figure 5). If the array has no
.ambig'uities, there is no third a vector that lies in the subspace. Thus, just as
in the case of one emitter, we can invert the a(6) mapping provided by the

array manifold to determine the DOAs (Figure 5).

Sensor 3

Sensor 2

Figure 5: DOA Determination for 2 emitters

In general, we observe the data vector p, determine the signal
subspace, find its intersection (d different a vectors) with the array manifold,
and invert the mapping a(6) to estimate the DOAs of the emitters. It is

apparent that, in general, this method requires the number of emitters d to

15




be fewer than the number of array elements N (if d>N, the entire array
manifold may lie within the signal subspace). Clearly, if the array manifold is
such that the a vectors corresponding to the emitter DOAs are not linearly
independent (array ambiguity), the signal subspace dimension is less than
the number of emitters. In such a case, the method described above fails to
give the correct number of emitters and fails to identify one or more of the
emitter DOAs. Such ambiguities can often be avoided by proper array design
(although sometimes physical constraints, such as in line arrays, preclude
such design).

Multipath. It is possible for the emissions from a single emitter
to arrive by two or more different paths (e.g., as a result of reflection from the
water surface, in the sonar case). To illustrate the effect of such a situation,
we consider the case of an array receiving signals from one emitter via two
different DOAs. In such a case, the two signals will exhibit perfect temporal
correlation (at least in theory). Recall that it is the independent variation
with time of the array output due to individual signals from different DOAs
that causes the signal vector to sweep out a two-dimensional subspace
(Figure 3). In the multipath case, however, the array no longer responds
independently to signals received from the two DOAs: the signal subspace is
one-dimensional. In addition, note that this signal subspace is not spanned by
any combination of vectors in the array manifold. Thus, the geometric
approach is incapable of dealing with perfectly coherent multipath.
Fortunately, such multipath is rarely, if ever, observed in real life. However,
the performance of most geometrically-based algorithms degrades rapidly as
the correlation between emitters (or multipath arrivals) approaches 1.

Noise. The above discussion assumes that no noise is present.

With noise present, the signal-plus-noise vector p sweeps out a curve that no

16
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longer lies in the signal subspace. Thus, the simple techniques described are
not valid if noise is present.

Essentially, the technique described above for noise-free
conditions must be modified as follows. For simplicity, we will assume that

the noise is spatially isotropic and uncorrelated, so that (2) becomes

R, =ARA" +6°1,,
where I is the NxN identity matrix and the covariance matrices R, and R,

represent theoretical, not estimated statistics. We now consider the following

eigenvalue problem:

R e = le.

P

Since R, is Hermitian, the eigenvalues are real and the associated

eigenvectors may be selected to be orthonormal [Ref. 33]. Then,

0=det{R, - AL, ]
= det| AR, A" —(1-0*) ] (7)

Per the definition of the Nxd matrix A, the columns of A are the a vectors
corresponding to the d emitters. As mentioned above, if the array has no
ambiguities, these a vectors are linearly independent and therefore A has full
(column) rank d. The elements R (i,j) of R, have the form r,S,S*, wherer;is a
correlation coefficient between the ith and jth signals and S, represents the
(complex) signal amplitude (not a function of time in this case) of the ith
signal. Thus, the dxd matrix R, has full rank d unless one or more pairs of
emitters are perfectly correlated (in which case r;=1 for some i, j and

therefore the ith and jth columns are linearly dependent). Thus, assuming no

array ambiguities and less than perfectly correlated emitters, the first term

17




in equation (7) is an NxN matrix of rank d. That term therefore has d non-
zero eigenvalues v, and N-d zero eigenvalues. Since the eigenvectors of this
term are also eigenvectors of the second term (identity matrix), the
eigenvalues of the sum of the two terms in equation (7) are the sums of the

respective eigenvalues; i.e., the eigenvalues of R, are

{A}= {v1+0'2,...,vd +0'2,0'2,...,0'2}.
The eigendecomposition of R, may thus be expressed as
R, = EAE”
= EgNGE +0°I
where E is the matrix of eigenvectors, A=diag(4,), Eg contains the columns of
E corresponding to non-zero eigenvalues of AR A", and Ng=diag(v,). Now

consider the equality

ARA =ENE{ . (8)
Obviously, both the dxd diagonal matrix Ng and the Nxd matrix Eg have rank
d. Thus we see that the right hand side of (8) consists of a NxN matrix with
rank d, each of whose columns is a linear combination of the d columns of Eq.
Therefore, the N columns of the right hand side must span the same subspace
as the d columns of Eg. Similarly, the columns of the left hand side of (8)
must span the same subspace as the d columns of A. Consequently, the
columns of Eg must span the signal subspace (the subspace spanned by the
columns of A). In the presence of noise, then, the signal subspace may be
determined by performing an eigendecomposition. The N-d eigenvectors
corresponding to the zero eigenvalues of AR A span what is referred to as
the noise subspace (the orthogonal complement to the signal subspace). In the

case where the noise is not isotropic and spatially uncorrelated, a generalized
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eigendecomposition [Ref. 23] must be used; such a decomposition requires
that an estimate of the noise covariance be available. The existence of an
estimate of the noise covariance will not be assumed in the data analysis to
follow, so we will not address this generalized eigendecomposition further.
Obviously, there is some price to be paid for not incorporating the structure of
the noise covariance in our method; we expect this price to increase as signal-
to-noise ratio decreases.

In the real world, the covariance matrices are never known
exactly, but must be estimated from observations. In the data analysis to be

presented later, the following estimate of the covariance matrix will be used:
R, =PP?/L,

where L is the number of observations and P is an NxL matrix whose

columns are observations of the received signal p at successive times; i.e.,
P=[p(t1) i P(t) 1 P(tL)]

Because of estimation errors, the N-d noise eigenvalues of this estimated
covariance matrix will not have exactly the same value ¢ so that even the
number of emitters d cannot be estimated with certainty. For the purpose of
the present discussion, however, we assume that d is known. Estimates of the
signal subspace may then be obtained via the familiar Linear Least Squares
and Maximum Likelihood techniques [Ref. 23]. For the simple case of
Gaussian noise, these techniques give the same result, but one which is not
computationally feasible in most practical situations (since both involve a
global minimization over a space with dimension equal to the number of
emitters). The MUSIC algorithm discussed in the sequel arose out of the need

to reduce computational compléxity.
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Estimating the Subspace Dimension. In an optimal
estimator, the problem of estimating the subspace dimension cannot be
decoupled from that of estimating the subspace itself. However, in the
interest of reducing computational load, we can estimate the dimension
separately. This feature of the MUSIC algorithm therefore causes it to be
suboptimal.

Estimating the Signal Parameters. As mentioned earlier, in
the presence of noise, we can no longer depend on precise intersections
between the signal subspace determined from the estimated covariance
matrix ﬁp and the array response vectors corresponding to the signal DOAs.
To estimate these DOAs, we must therefore determine those a vectors which
are “closest” (in some sense) to the signal subspace. There are several
possible methods for doing this; we consider only the simplest method
(Conventional MUSIC) here.

Recall from the earlier discussion that when the theoretical (i.e.,
not estimated) covariance matrix R, is used to determine the signal and noise
subspaces, the array response vectors corresponding to the signal DOAs span
the signal subspace and are orthogonal to the noise subspace. Thus, the

squared length of the projection of an a vector onto the noise subspace, given

by

Length squared = a” (9)E\Efa(6),
will be zero when 6 is one of the emitter DOAs. However, because of
estimation errors (as well as because of inaccuracies in the signal model used
to determine a(@)), when the estimated covariance matrix f{,p is used to
determine the signal and noise subspaces (i.e., to determine E,), this quantity

will generally not be zero for any a. We must therefore search the array
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manifold for the set of d array response vectors which result in the lowest
value for the quantity. An alternative method for accomplishing this is to

define the function

1
Ful6) = a” (9)EyEZa()’ ®)

The estimates of the signal DOAs then correspond to the peaks of this
function. Although this function is similar in some respects to beamformer
output power functions such as that in (5), the peak heights of this function
do not necessarily provide any information about the power in their

respective components.

B. HIGHER-ORDER STATISTICS

In recent years, there has been increasing interest in the use of higher-
order (i.e., order greater than 2) statistics in signal processing. One reason for
this interest is that the statistics known as cumulants are identically zero for
Gaussian random variables, provided that the order of the cumulant is
greater than 2. Intuitively, we would expect that, in situations where the
noise is Gaussian but the signal is not, cumulant-based methods offer
potentially large performance improvements over conventional methods
based on second-order statistics, by removing the noise without affecting the
signal. A detailed treatment of higher-order statistics is beyond the scope of
this dissertation; for the purposes of this discussion, a brief consideration of
the 4th-order cumulant will suffice. Broader treatments of the topic
(including the material in the sequel) may be found in articles by Shiryaev
[Ref. 34], Brillinger [Ref. 35], and Brillinger and Rosenblatt [Ref. 36]; tutorial
articles by Nikias and Raghuveer [Ref. 371 and Mendel [Ref. 38]; and the
recent textbook by Nikias and Petropulu [Ref. 39].
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The joint characteristic function ® of a set {x,, x,,..., x,} of n real

random variables is defined [Ref. 25] by

(0, @,,...,0,)= E{exp[ J(0,, + @y, +-- + conx,,)]},

where E denotes statistical expectation, as before. The form of this function
obtained by making the substitution s;=j®, is known as the moment-
generating function; the moments of the x, can be obtained from the
coefficients of the Taylor expansion of the moment-generating function about
s;=0. The second characteristic function ¥ of these same random variables is
defined as ¥=In ®. The joint cumulants of order r=k +k,+ +k, of these

random variables are defined [Ref. 25] as

(0, 0,,...,0,)
o0} dw} - dwl

Cum[xf‘,x?,---,x:"] =(-J)

,  (10)
0,=0,=..=0,=0

L.e., the coefficients of the Taylor expansion of ¥ about @.=0. For the 4th-order
cumulant of zero-mean real random variables x,, it can be shown [Refs. 34,

39] that (10) reduces to

Cum(x,, x,, %5, %,) = Elx,2,20,,] — Elx,x,] - Elx,%,]

—Elx,x,] - Elx,x,] — Elx,x,] - Elx,x,] (11)

It may further be shown [Ref. 25] that, if the x; are jointly Gaussian, the 4th

order moment is given by
E|xx,%5%, ] = E[x.x,)- E[xyx, |+ E[x,%,]- E[x,x, |+ E[xx, ] E[x,x,[;  (12)

therefore the cumulant vanishes as claimed. For complex random variables,

(11) takes the form [Ref. 40]
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Cum(x,, x,, x5, x,) = Elx,2,%,%,] — E[x,%;]- E[x,x,]

~Elxp,) Elxx;)- Elxg]]- Elryx,) (13)

where the third term is generally assumed to be zero due to the symmetry
property between the real and imaginary parts of a stationary, bandpass,

complex process [Ref. 41]. We will retain this term for generality.

A spatial 4th-order cumulant matrix C, may be defined as follows:

P1(t)p: (t)

C, = Cum| POP:(0) [2:6)p1(2), 2, (6)P3 (0, ()RR ()]}, (19

where “*” denotes complex conjugate and the p,(¢) are sensor signals (complex
pre-envelopes) at each of N sensors in an array. This definition differs from
the one used by Nikias and Petropolu [Ref. 39], but was selected so that C, is
Hermitian. By substituting (11) into (14), and using vector notation, we

obtain

C, = E{(pop*)(pop*)”}_E{pop*}E{(pop*)H}

~E{pp”}-E{p'p"}- E{pp”}- E{p'p"} (15)

where o denotes the element-by-element product of the vectors and
superscript T indicates (non-conjugate) matrix transpose. The fourth term of
(15) is generally assumed to be zero due to the symmetry property discussed
in conjunction with (13) but will be retained for generality. Substituting the
signal model of equation (1) (for the case of a single emitter) into (15) gives
C,= E{(as oa's")(aso a*s*)H} ~E{aso a*s*}E{(as ° a*s*)H}
—-E{ass*aH} ° E{a*s*saT} - E{assaT} ° E{a*s*s*aH }
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provided that the signal and noise are independent (the single-emitter
assumption is made here for notational convenience and will also be made
during the actual data analysis in the sequel). Since a is deterministic, it may
be factored out of the expectation operators, and we obtain, after some

algebra
C.=r(aca’)aca’)’, (16)

where
y = Cumls(¢), s"(t), s(¢), s"(¢)}

is the kurtosis measure of the (single) emitter signal s(¢) and a is the array

response vector corresponding to the location of the emitter.

The structure of C, is therefore identical to that of the covariance .
matrix defined in (2), except that: 1) the noise covariance vanishes due to the
properties of the 4th-order cumulant; 2) the array response vector a is
replaced by aca’, which is real; and 3) C, has rank 1 (see (16)) due to the
assumption of a single emitter and is real. This structure allows the use of a

modified version of the previously discussed MUSIC algorithm as follows:

e Form an estimate 64 of the C, matrix from the measured data

using (15), with expectation operators replaced by time averages;

e Perform an eigendecomposition of é4. Because it has rank 1, there

will be (theoretically) a single non-zero eigenvalue.

¢ Select the eigenvector corresponding to the largest eigenvalue; as
shown earlier (8), this eigenvector must span the same subspace as

the a vector corresponding to the actual emitter location. The
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R e |

remaining eigenvectors span the noise subspace and form the

columns of Ey.

¢ Form the function

1

Py = " )
[a(6)oa*(0)]" ExEX[a(6)oa*(6)]

(17)

the estimate for the emitter location corresponds to the peak of this function.
This method can be easily generalized to the multiple-emitter scenario,
provided that the signal subspace dimension is selected to correspond to the
number of emitters. However, our experimental work with real data does not

require this generalization.

Cumulant-based versions of the Bartlett and MVM methods also exist
[Ref. 39], but these will not be used in the data analysis. It should also be
noted that the form of the 4th-order cumulant appearing in (15) is a reduced

form of that used by Porat and Friedlander [Ref. 20].

C. ACOUSTICS AND MODELING

L Helmholtz Equation

Whereas in DOA estimation the received signals are assumed to be
plane waves, in MFP the pressure field amplitude p(r,z) in an underwater
channel (see Figure 6) due to a narrowband emitter with center frequency ®

is assumed to satisfy the Helmholtz equation [Ref. 42]

19, ¥l ot

ror o %7 + k(r, z)2p(r, z) =0, (18)

where r is the range from the emitter to the observation point, z is the depth,

and k=w/c is the wavenumber. Cylindrical coordinates are used in (18)
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because of the symmetry which exists when changes in sound speed in the
azimuthal direction are negligible. The sequel will present an overview of
methods for solving (18) numerically which are pertinent to this dissertation.

In this section, it will be assumed that no observation noise is present.

r .

A

Figure 6: Generic Underwater Channel

2. Normal Mode Solution

In a channel where all properties (sound speed, water depth, bottom
type, etc.) are independent of horizontal range, it is well known [Ref. 42] that
the pressure field p at range r (relative to an arbitrary origin; see Figure 6)
sufficiently far away from the emitter and at depth z may be expanded in

terms of normal modes as follows:

Z,(2)Z,,(z)e ") (19)

m

p r’ Z’ t; r ) ¥4 = m
( %) m§=:1 k,(r-r,)

where: z, and r, are the emitter depth and range, respectively; r is taken to
be greater than rj; A is a constant which depends on the emitter power; and
the Z, and k, are the eigenfunctions and eigenvalues, respectively, of the

ordinary differential equation
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d*Z 2
dz2m +[c2aEZ) —ki:izm =0 20)

The boundary conditions for (20) depend on the acoustic properties of the
surface (which is always assumed to be pressure-release; i.e., ®(z=0)=0) and
the bottom. Attenuation due to sediment and water column is incorporated,
as is customary, via a sméll imaginary part in the k,_. Although the sum in
(19) is over values of m from 1 to infinity, all modes for which m is greater
than some integer M are attenuated enough to be ignored at the ranges of
interest; such modes include the strongly bottom-interacting and evanescent
modes. In the discussions to follow, we will ignore these modes and
incorporate only the lowest M modes in our normal mode expressions. It
should be noted that, in general (i.e., for range near zero), the expansion (19)
is only approximate, since it only accounts for the discrete spectrum of the
modal solution to the Helmholtz equation (18). This fact does not present a
problem, however, because the contribution to the pressure field from the
continuous spectrum is negligible at the ranges of interest in MFP/MMP.
Numerous methods exist for implementing (19) on a computer (see, for
example, [Ref. 43]). As is characteristic of solutions of boundary value
problems such as (20), the Z, are orthogonal with respect to the density

function p(z), i.e.,

s —I—Zm(z)zn(Z)dz =v,8(m-n), (21)

where



This orthogonality will prove useful later in the discussion of Matched-Mode
Processing.

3. Adiabatic Approximation

As mentioned above, the normal mode expression (19) is strictly valid
only in range-independent environments; nevertheless, it can be modified
slightly to apply to a limited class of range-dependent environments.
Whenever range dependence exists (due to a sloping bottom or change in
sound speed profile, for example), it is clear that the Z_ and &, must be
functions of range. If the range dependence is relatively weak, it can be
assumed that a mode does not exchange energy with other modes, but merely
adapts itself to local environmental conditions. This assumption is known as
the “adiabatic” approximation. In such a case, (20) is solved at each of the
ranges of interest. The resulting Z  and %, are then functions of range, so

that the pressure field can be expressed as

A

n12=1 \/ k,(r)(r-r,

4. Coupled Mode Model

p(r, z,t;r, zo) =

) Z,(r,2)Z,(r, 2) exp{ jot— jj k, (r)drj'.(22)
To

Due to the energy exchange between modes in a strongly range-
dependent environment, the use of a normal-mode model in such an
environment becomes more complex. For simplicity, we assume that
horizontal refraction and azimuthal scattering are negligible (see [Ref. 44] for
a fully three-dimensional treatment). As will be discussed in more detail
later, this approximation is satisfacto;‘y for the acoustic environment
addressed in the data analysis to follow [Ref. 19].

Mode coupling may be accounted for in a manner consistent with the

notation used above by defining a range-dependent mode amplitude A ()
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(i.e., the complex constant A in (22) becomes a function of both range and

mode number m) [Ref. 45]. The pressure field is then given by

m

M . ,
P(r, z,tr, Zo) = 2‘1—271%:—;-(2—’5—:‘-)—)- Z, (r, z)Zm (ro, zo) exp{jw t- ]I k., (r)dr] (23)
m= 0

o

In this expression, all coupling between modes is accounted for by the A_ (i.e.,
each A, depends on the mode amplitudes and phases of all other modes along
the propagation path). The Broadband Coupled Mode model developed by
Chiu et al. [Ref. 19] has demonstrated high accuracy in predicting the modal
structure observed in the Barents Sea Polar Front Experiment and will be

used for all data analysis in the sequel.

D. MATCHED-FIELD AND MATCHED-MODE PROCESSING

A good overview of this topic may be found in the textbook by Tolstoy
[Ref. 46]. Only background material pertinent to the later data analysis
(along with some preliminary material) will be presented here.
L Motivation
Several limitations in applying DOA estimation techniques to the
underwater acoustic localization problem arise from the inability of the
simple plane-wave signal model to describe the acoustic field adequately. In
this section, we describe these limitations, which provide the motivation for
study of MFP/MMP.
a. .Ability to determine target parameters
Because of the assumption that the received signal is a plane
wave, the only degree of freedom in the array response vector is DOA.
Therefore, DOA estimation is inherently incapable of providing any other

information. In particular, it gives no range information, which in military
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applications is of vital interest (although it should be pointed out that it is
possible to determine range by observing DOA information over time,
provided that certain assumptions concerning target motion are valid; see
[Ref. 47)).

b. Estimation error

Since the speed of sound in seawater is a function of position,
the sound “rays” (i.e., paths normal to the surfaces of constant phase) are
curved. Consequently, the DOA estimates will, in general, be different from
the actual directions of the emitters. In many practical situations, the
receiving array has no depth extent (e.g., a horizontal line array) and the
ocean may be considered to be horizontally stratified (i.e., speed of
propagation is a function primarily of depth). In such situations, the plane
wave signal model is relatively accurate. Even in such cases, the DOA
estimates will often be significantly in error due to reflection of sound energy
from boundaries (surface and bottom).

c. Loss of gain

We have noted earlier that the Bartlett beamformer results in
the highest output SNR, provided that the noise is spatially homogeneous.
Essentially, this feature is due to the fact that the signals from different
receive array elements add constructively (because the beamformer
introduces phase shifts to account for the shape of the wavefront) while the
noise components do not. In an underwater acoustic channel, however, the
wavefronts may not be planar (particularly in the vertical direction), so that
the signals from the array elements will no longer be added perfectly
constructively (since the beamformer assumes the wavefront is planar when
it actually is not). Consequently, the gain of the beamformer will be lower

than when the incoming signal is a plane wave.
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d. Inability to resolve multipath arrivals

As mentioned earlier, many eigenstructure-based methods
(including MUSIC) are unable to handle signals from multiple highly
correlated emitters. Reflections from boundaries in the underwater acoustic
problem can often result in the same signal arriving at the receiver from
multiple directions. This situation is equivalent to the presence of multiple,
highly correlated emitters; thus, MUSIC and similar methods break down in
such a situation.

2. Generalization of array processing algorithms
a. Matched-Field Processing (MFP)

For the case of a single signal, (1) becomes
p=as(t)+n. (24)

We can use (23) to express the pressure at a receiving array consisting of a

set of N vertically-aligned hydrophones at depths {z,, z,,...,z,} in the form (24)

if we identify
p(r,z,,¢)
p= p(r, 22 t) 25)
p(r, zy,t)
and
M r
a=y 20 7 ()2 (n,z)em-i[ b,
m=1:/k,,(r)(r-1,) "

where exp(ja¥)=s¢) and Z ,,(r)=[Z (rz2,), Z,(r,2,),..., Z, (1,2y)]". The array
response vector a is now a function of emitter range r, and depth z, rather

than azimuth, as in DOA estimation. The a(r,z,) are obtained by calculating
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the pressure field seen at the receive array using an appropriate propagation
model, for every possible (r,z,) combination of interest. In the previous
discussions on DOA estimation, no assumptions were made concerning the
form of a. Furthermore, the dependence of a on azimuth alone was for the
purposes of illustration only, and is not required for the DOA estimation
techniques to be valid. Therefore, the algorithms discussed above in the
context of DOA estimation may be used in MFP as well [Refs. 3, 7]. It should
be noted that MFP does not require that the acoustic field be expressed in
terms of normal modes; the above analysis is valid for other types of
propagation models as well.

The well-known principle' of acoustic reciprocity (see, e.g., [Ref.
48)]) is very useful in minimizing the computations required to generate the
array manifold. This principle states that, under a set of reasonable
assumptions, the acoustic pressure at a location (r,2) generated by a simple
source at location (r,z,) is the same as the acoustic pressure at location (r,z,)
generated by that same source at location (r,z). In MFP, the construction of
the array manifold requires that the field at a known receiver location (r,z) be
computed for every possible emitter location (r;z,), whereas one run of a
propagation model will generally produce the acoustic field at every possible
receiver location due to an emitter at a known, fixed location. Thus, it may be
seen that this principle of acoustic reciprocity allows construction of one
component (corresponding to one element of the receive array) of the array
manifold with a single run of a propagation model. The total number of runs
required will be the same as the number of elements in the receive array.
Clearly, this approach allows huge savings in computation compared to a
“brute force” approach which performs one run of a propagation model for

each possible source location.
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The procedure for MFP may be outlined as follows:

* Determine the pre-envelopes of the received (real) signals at each
receive hydrophone. Use these pre-envelopes to generate an
estimate (using time averages instead of statistical expectations) of

the covariance matrix R, (or the 4th order cumulant matrix C,);

» Using a suitable propagation model and invoking the principle of
acoustic reciprocity, generate the array manifold vectors a(r,z,)
(which in the context of MFP/MMP are generally called replica
fields) for values of (r,z,) on a suitable grid;

* Generate the functions in equations (4) (Bartlett), (5) (MVM), (9)
(MUSIC), or (17) (cumulant MUSIC), as desired. These will now be

functions of two variables (r,,z,) rather than one (), i.e.,

B(ry, 2,) = a” (1, z,)R a(r,, 2, ) (Bartlett), 27

1

B(r,, 2,) =
(1o:20) a? (ro,zo)R;la(ro,zo)

(MVM), (28)

1
P =
20 S o xR 2)

(MUSIO), (29)

1

[a(r, 20) 02" (15, 20)] ExEZ[a(ry, 2) 0" (1, 2,)]

The estimated emitter locations are the (r,z,) combinations for

PM(rO’ZO) =

(Cumulant). (30)

which these functions are maximized. In MFP/MMP, plots of these
functions are generally referred to as ambiguity surfaces.

b. Matched-Mode Processing (MMP)

MMP [Refs. 4, 49, 50, 51] requires the pressure field in the

channel to be expanded in terms of normal modes. As will become clearer
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later, it may be understood intuitively as a transformation of the
observations from the space of individual hydrophones to the space of modal
amplitudes. This transformation is known as mode filtering. As before, we
will assume that an accurate representation of the field (23) requires only a
finite number of terms M.

As with MFP, the pressure field is sampled with an N-element
vertical array of identical elements at depths {z,, z,,...,2,], located a distance r
relative to an arbitrary origin. The vector of received pressures (defined in

(23) and (25)), without additive noise, may be expressed in matrix form as

p:Zu, (31)
where
Zl(r’zl) Zz("’zl) ZM(r’ZI)
7 = Zl(r,zz) Zz(r,zz) and
Z](",ZN) ZM(,-,ZN)
u=[u, u, - Uy I, with
A,(1) _—

) =——2L 7 (1, wt—jlk, (r)dr|. 32
)= =) ) exp{J Jr{ " r} o

Z thus contains all information about the receiving array, while u contains
all information about the location of the emitter relative to the receiver. Both
Z and u contain information about the channel via the eigenfunctions Z,,
which are derived from normal mode analysis. An estimate @ of u may be
obtained from (31) using either of two classes of methods.

The first class of methods regards estimation of @ from a purely

mathematical perspective, namely, as a least-squares problem [Ref. 33],
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either overdetermined (N2M) or underdetermined (N<M). In this problem, &

is selected to minimize the quantity
A 2
|za - pl;, (33)

the squared Euclidean norm of the residual (Zé—p). In the overdetermined
case, assuming that Z has full rank, the solution @ is unique. In that case,
the selection of a suitable method is based on considerations of numerical
stability and computational complexity. If the problem is underdetermined
(as is the case with the data to be analyzed in this dissertation) or Z is rank-
deficient, there is an infinitude of vectors & which minimize (83). Two
subclasses of least-squares methods exist in this case: those which produce a
solution @ with minimum norm (such as the pseudo-inverse method discussed
below) and those which do not (such as certain versions of the QR
factorization method). Methods in the latter subclass give solutions with
significantly greater sensitivity when p is contaminated by observation noise.
We will consider only the pseudo-inverse method in this dissertation.

The singular value decomposition (SVD) of Z is given by [Ref.
33]

U¥ZV = diag(o,,0,,...,0,)
o, :
!
= l0|=X
oy |
where U and V are NxN and MxM unitary matrices respectively,
p=min(M,N), and the o; are the (real and non-negative) singular values (some

of the o, will be zero if Z is rank-deficient). Note that the matrix partition
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shown assumes N<M; the partition when N>M is analogous. The

pseudoinverse Z* of Z is defined as

ZH = VE+UH,
where
z*:diag(i,...,—l—,o,...,o] (34)
0, Op

and R=rank(Z). The minimum-norm solution of (31) can be expressed as
a=7Z'p. (35)

Obviously, the expression (30) is very sensitive to the presence of small but
non-zero singular values (due, e.g., to roundoff error). This phenomenon may
be satisfactorily dealt with by treating all singular values on the order of .
machine precision (or smaller) as zero. As is well known, if N>M and Z has

full rank, the unique least-squares solution is given by
4=Z'p=(2"2) Z"p.

This method of modal decomposition is referred to by Yang [Ref. 52] as the
“Eigenvector Method”. Obviously, modes which are so poorly sampled by the
receive array that the corresponding columns of Z are nearly linearly
dependent cannot be resolved using this approach.

As mentioned earlier, the analysis to follow does not assume the
existence of an estimate of the noise covariance. It is worth noting that, when
p is contaminated by observation noise with Znown covariance (i.e., known,
except possibly for a constant multiplicative factor), @ should be determined

via the generalized least-squares method [Ref. 33] in order to ensure that
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undue weight is not given to data from hydrophones with high levels of
observation noise. Since this method will not be used in our analysis, it will
not be discussed further.

The second class of methods (see, for example, [Ref. 51]) for
estimating @ regards the problem from a more physical perspective; i.e., it
exploits the orthogonality property of the mode functions (columns of Z) (21).
In (21), if the spacing of hydrophones is sufficiently dense, the integral may
be replaced by a sum without significant loss of accuracy. Furthermore,
within the water column, the density p is approximately independent of
depth. Thus, the columns of Z are approximately orthogonal, at least for the
lower modes (i.e., for those modes which are well sampled by the receiver

depths z)), i.e.,
ZH7 -A%diag(vl,vz,...,VM),

where Az is the spacing of the vertical grid on which the mode function is

evaluated. To obtain an estimate of u, we premultiply (31) by Z¥
Z%p =Z"Zu

= édiag(vl,vz,...vM)-u.
We may thus take the estimate of u to be

ﬁ:fdiag(_l_,_l_,...,_l_)zﬂp. (36)

This method of estimating u, which we will refer to as the projection method,
is obviously very similar mathematically to the pseudoinverse method.

Because of the mode orthogonality assumption, only modal amplitudes
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corresponding to those columns of Z which form a (nearly) mutually
orthogonal set may be accurately estimated.

When observation noise is present, (31) becomes

p=Zu+n.

As mentioned earlier, because we do not assume that an estimate for the
noise covariance is available, the presence of this observation noise does not
affect how we estimate u (although, of course, the value of the estimate will

be affected). Using the pseudoinverse method to estimate u, we obtain

u=Zp

=Z"Zu+Zn

=Uu+ Z+n . (37)
From (32) we have

u = as(t),
where
a(ry,2zg)=la,(re,zy), arezp),..., ay(r 0720)]T’ (38)
o, = 2nlB20) 7 exp{-j f km(r)dr} and
ko (r)(r 1) "o
s(t)=exp(jar).

If we define

n’=Z"n,
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(37) becomes
u= as(t) +n’. (39)

The expression (39) is of the form (1), again for the special case of a single
signal. Therefore, once 1 is known, the MFP techniques discussed above may
be used to find the emitter range and depth. As discussed earlier, no estimate
of the observation noise will be used in the analysis to follow. Thus, the fact
that the “noise” n’ has a different character from n does not affect our
analysis. The analysis for the case of the projection method is essentially the
same as the foregoing and will not be presented separately. Yang [Ref. 52]
notes that this method of modal decomposition gives a localization estimate
which is mathematically equivalent to the MFP approach when the Bartlett
processor and all modes are used.

Regardless of which method of estimating u is used, care is
required in selecting which subset (i.e., which components of & and a) of the

full mode set (obtained from either (35) or (86)) is to be used, because:

e As the mode number increases, so does the vertical wavenumber
[Ref. 42]; thus, for higher-order modes, a closer vertical spacing of
receive hydrophones is necessary for adequate “sampling”

(analogous to the sampling theorem in time-series analysis);

* Propagation models generally show greater sensitivity to
uncertainties in the environmental parameters when predicting

high-order modes than when predicting low-order modes (see, e.g.,

[Ref. 52]);
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e Modes which are only weakly present (i.e., which have low modal
amplitude) at the receiver location can generally not be estimated

accurately;

¢ Only those modes which have most of their energy at depths within
the physical extent of the receiving array are likely to be estimated

accurately (see, e.g., [Ref. 52]);

o When the number of receive hydrophones is less than the number of
modes supported by the channel (as is the case with the data to be
analyzed later in this dissertation), the inversion of (31) is an
underdetermined problem and therefore cannot provide accurate
values for all modes.

The first and second considerations usually favor the lower-order modes. This
generalization is not valid in all situations: for example, incorporation of
poorly resolved higher-order modes into the estimator can sometimes reduce
sidelobe levels when the low-resolution Bartlett processor is used [Ref. 52].
The third consideration also tends to favor low-order modes, at least when
the emitter and receiver are widely separated (since higher-order modes are
attenuated more rapidly). The fourth consideration is relatively easy to
employ, since the modal structure (i.e., mode shapes) at the receiver location
is known. The fifth consideration favors modes which are well sampled by the
receiving array and which are therefore nearly orthogonal, since only nearly
orthogonal modes are well resolved by mode filtering. Again, these modes are
generally the low-order ones. In general, an initial localization estimator
should be constructed based on a mode set selected using the above
considerations. The peaks of this estimator may be regarded as candidate

emitter locations. Then, revised estimators (one estimator per candidate
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source location) may be obtained by using only those modes which are
expected to be present at the receiver due to sources at these candidate
locations. Thus, a strategy of iterative improvement may be used to refine the
estimator.

The MMP technique may be summarized as follows:

e Perform quadrature demodulation on the received (real) signals at

each receive hydrophone to obtain p(2);

¢ Use either the pseudo-inverse or projection methods to estimate u(t)

from p(¢) using (31);

e Generate an estimate of the modal covariance matrix R_=E[uu”]

(or the 4th order modal cumulant matrix C);

¢ Using a suitable propagation model and invoking the principle of
acoustic reciprocity, generate the array manifold vectors a(ryz,)

(from (38)) for values of (ryz,) on a suitable grid,;
o Select a subset of the full mode set for use in further processing;

e Generate the functions in equations (27) (Bartlett), (28) (MVM),
(29) (MUSIC), or (30) (cumulant MUSIC), as desired. The estimated
emitter location is the (ry,z,) combination for which the function is

maximized.

e As is apparent from our discussion above concerning mode
selection, the major advantage (at least from the perspective of our
research) of performing MFP in mode space (i.e., MMP) rather than

in hydrophone space is that estimation errors due to environmental
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mismatch may be reduced by using by using only robust modes,

which are less sensitive to such mismatch.
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III. EXPERIMENTAL SETUP

This chapter provides an overview of those aspects of the Barents Sea
Polar Front Experiment which are applicable to this research. This
experiment provided the data on which the MFP/MMP algorithms were
tested.

A. ENVIRONMENT

The data used in the analysis to follow was obtained during the 1992
Barents Sea Polar Front Experiment [Refs. 16, 17, 18, 19]. Most of the details
of that experiment are not pertinent to our analysis, but may be found in the
listed references; the pertinent aspects are provided below.

1L Bathymetry

Figure 7 shows the bathymetry of the acoustic channel, as well as the
locations of the source (far left side of the plot) and the receiver (located at
roughly 34 km range) (to be discussed later). The geometric axis from the
source to the receiver was almost directly downslope.

2. Sound Speed Profile

Figure 7 and Figure 8 illustrate the sound speed field in the channel.
The curves in Figure 8 were obtained by interpolation of sensor casts made at
roughly 10 km intervals; the dotted and solid curves correspond to the source
and receiver locations, respectively. The sound speed field obtained from the
interpolation was used as input to the BBCM model for all data analysis. The
higher resolution sound speed field of Figure 7 was obtained by tomographic
inversion [Ref. 19]; it is provided for illustration only and was not used in our

analysis.
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Figure 7: Sound speed field and bathymetry

The plot uses MATLAB’s “pseudocolor” feature: the gray level at each

point in the plot maps to a sound speed (in meters per second) per the gray
level bar at the left side of the plot. The plot clearly shows the front which
was the primary subject of interest in the Barents Sea Polar Front
Experiment; this front was nearly perpendicular to the axis between the
source and receiver. This fact, combined with the fact that sound propagation
was almost entirely downslope, allows us to make the assumption that no
horizontal refraction or azimuthal scattering occurred [Ref. 19]. The front
was observed to move upslope and downslope with a dominant periodicity of
about two hours and a peak-to-peak amplitude on the order of 4 km. The
sound speed and density in the bottom were obtained from standard Navy
databases and were found to be 3200 m/s and 2600 kg/m?, respectively; these

values were verified by SUS measurements [Ref. 53].
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Figure 8: Sound Speed Profiles

B. SIGNAL AND NOISE

The transmitted signal consisted of M-sequences with a center
frequency of 224 Hz. Two sets of M-sequences, separated by about nine hours,
were transmitted during the experiment. Each set consisted of 30 M-
sequences, each of about five-second duration, giving a total of about 2.5
minutes of transmission per set. The unique properties of the M-sequence
were needed to achieve the goals of the Barents Sea Experiment (i.e.,
accurate travel time determination), but are not relevant to this dissertation
and will therefore not be discussed here. For the present analysis, the
received signal was filtered using a Minimum-Variance filter to remove the
M-sequence properties; this type of filter was selected to ensure that any
strong interfering signals due to engine noise from the test ship were nulled

out (see, e.g., [Ref. 54]). We found, not surprisingly, that use of this filter
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resulted in emitter location estimates superior to those obtained using the
usual Fast Fourier Transform (FFT) approach. Figure 9 shows the power
spectral density (relative to the peak) of the unfiltered received signal at a
particular hydrophone and a particular time. The received signal (at 224 Hz),
when averaged over all hydrophones, has a SNR of ébout 10 dB (ratio taken
over the entire signal bandwidth); the exact value of the SNR is not

particularly important for our analysis.

Signal Power Spectrum

Power spectral density (dB relative to peak)

100 200 300 400 500 600 700 800
Frequency (Hz)

Figure 9: Power Spectrum

C. RECEIVER

The receive array consisted of a vertical string of 16 identical,
omnidirectional hydrophones with 10 m spacing. The uppermost hydrophone
was at a depth of 123.8 m. Prior to the collection of data used in this
dissertation, hydrophones 1, 2, 4, 6-8, and 16 experienced partial failure

(sep'aration of the two piezoelectric cylinders comprising each hydrophone)
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which reduced their sensitivity by 6 dB. This sensitivity reduction was

incorporated into the data analysis.
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IV. ANALYSIS AND RESULTS

This chapter provides further details of the analytical technique,
including preprocessing methods. It also provides and interprets our main
results (which take the form of ambiguity surface plots) from application of
the MFP/MMP estimators to the Barents Sea data for various choices of

parameters (noise, data length, etc.).

A. ANALYSIS TECHNIQUE
1. Signal Processing

The computational procedure may be outlined as follows:

e Construct the density and sound speed fields (functions of range

and depth) from in situ measurements using bilinear interpolation);

e Using sound speed, density, receiver horizontal location, and
bathymetry as inputs, and regarding each receive hydrophone as a
unit emitter, generate (using a suitable propagation model) and
store the parameters appearing in (31) (a separate set of

parameters for each hydrophone depth);

e Using a numerical implementation of (81) and invoking the
principle of acoustic reciprocity, calculate the array manifold on a

suitable grid of (r,,z,) values;

e Take the raw hydrophone data (an M-sequence) and add the
desired amount of noise (measured in the same environment during

a period when no transmissions occurred);
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e Pass the resulting signal through a 50th order minimum-variance
filter to eliminate out-of-band noise and to remove the M-sequence
properties from the signal (i.e. make it into an ordinary narrow-

band process);

o Calculate estimated spatial and modal covariance and cumulant

matrices from the resulting signal;

e Match these covariance matrices against the replica fields
calculated above (for MMP, use only the components corresponding
to the desired modes).

All computations were done using Matlab 4.2c on a Hewlett-Packard

735 Workstation. The propagation modeling used the Broadband Coupled
Mode (BBCM) algorithm [Ref. 19]. In every case, the ambiguity surfaces were
calculated for a grid with the following specifications, selected to ensure

peaks would not be missed while keeping the computational load reasonable:

Parameter Minimum Maximum Increment
(Emitter) Range 15 km 40 km 40 m
Depth 2m 146 m 2m

Table 1: Computation grid

The emitter range used in the plots is measured with respect to a reference
different from those shown in Figure 6 and Figure 7: it is measured with
respect to a point 1675 m downslope from the receiver. The 15—40 km range
window was selected to allow a fair assessment of our estimators, while
keeping the amount of computation manageable. Because the water gets
deeper as one gets closer to the receiver, more modes are required to
construct the pressure field (the number of modes supported is roughly

proportional to the water depth for a fixed frequency). The run time required
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by the BBCM model appears to be proportional to the number of modes
cubed.

2. Plotting

The ambiguity surface plots were generated using Matlab (version
4.2a) on a Macintosh LCIII and printed on a 600 dot per inch (dpi) HP
Laserdet 4, using the Matlab “pseudocolor” plot function with 32 gray levels.
Because a 600 dpi printer is not able to generate a dot screen with adequate
resolution to display data on a grid as large as that found in Table 1 without
requiring an excessive amount of space on the page, the ambiguity surface
data was smoothed before plotting: at each depth grid point, the value plotted
is the average for three adjacent range grid points. Subjectively speaking,
little information appeared to be lost as a result of this smoothing.

The quantitative assessment of the effect of various parameters on
localization performance presents an interesting problem. On all plots, the
bright areas correspond to maxima of the functions (27) through (30). No gray
scale is provided, since, for the MUSIC algorithm, the peak height does not
necessarily correspond to the power of the received signal. In fact, the values
corresponding to “white” and “black” differ somewhat from plot to plot. A
more suitable approach for quantitatively comparing the different plots may
be based on three major performance measures used in DOA estimation

literature (see, e.g., [Ref. 23]):
e Bias in the emitter location estimates;
¢ Ability to resolve multiple closely spaced emitters; and

e Existence of peaks at locations where no emitters exist.
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In the present case, because the precise location of the emitter is not known,
the first measure is not applicable in the form stated. Also, only one emitter
is present, so the second measure is not particularly useful either. The third
measure is applicable, although not easy to quantify. We have elected instead

to use the following:

e Ratio of the height of the correct peak to that of the highest false
peak (M1);

e Size (area) of the correct peak relative to the area of the entire grid

(M2);

e Ratio of the average height of all false peaks to the height of the

correct peak (M3).

Obviously, when M1<1, an incorrect estimate for the emitter location will be
obtained. The values of these three measures are given in the caption for

each figure that follows.

B. OVERVIEW OF RESULTS

In each section to follow, we consider the effect of the variation of a
single parameter (e.g., data length, algorithm type, SNR, etc.) while holding
all other parameters fixed at the following nominal values (for which

performance is good):

o Matched-mode method (using projection method of mode filtering

and modes 1-4);

¢ Data length of 1024 points;
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e Data taken from the beginning of the second set of M-sequence

transmissions;

e SNR=10 dB (i.e., no noise beyond that actually observed with the

signal);
e MUSIC method of array processing;
e Second-order statistics;
o Coupled-mode propagation model; and

e Hydrophone data corrected for reduced sensitivity of damaged

phones.

Each plot to follow has a title at the top containing the most
significant parameters (MFP/MMP, SNR, data length, and array processing
algorithm). Additional pertinent information appears either in the caption or
in the text referring to the plot. In every case, the correct emitter location is

at approximately 36 km range and 122 m depth.

C. MATCHED-FIELD VERSUS MATCHED-MODE PROCESSING

As mentioned earlier, propagétion models are generally more sensitive
to errors in knowledge of the environment when predicting high-order modes
than low-order modes. We therefore expect MFP to exhibit a higher incidence
of false peaks than MMP, since MFP uses all available modes (26). Figure 10
(MFP) and Figure 11 (MMP) illustrate this effect. For purposes of
illustration, we have added a small white circle at the correct emitter location
in Figure 10, although we have not done so with subsequent plots, because

the emitter location is fixed. Although MFP gives a peak at approximately
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the correct emitter location (M1=0.94), there are 2 other peaks which are
higher, as well as numerous smaller peaks (M3=0.043). MMP gives the
highest peak at the correct location (M1=1.7) and has fewer and smaller false

peaks (M3=0.016).

MF, MUSIC, SNR=+10 dB, 1024 pts
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80 :‘:,;,E:
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Range (m) x 104
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Figure 10: Matched-Field Processing (M1=0.94; M2=0.0077; M3=0.043)
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 1024 pts
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Figure 11: Matched-Mode Processing (M1=1.7; M2=0.012; M3=0.016)

D. BEHAVIOR OF DIFFERENT ARRAY PROCESSING METHODS

Both Figure 12 (MVM) and Figure 13 (Bartlett) show poor resolution
compared with MUSIC (Figure 11). Both of these methods produce the
largest peak at the correct location (M1=1.26 and 1.03, respectively), but
there are large and numerous false peaks (M3=0.11 and 0.14, respectively).
In particular, with the Bartlett method, the correct peak is nearly impossible
to identify visually. The behavior of these three methods when used on this
data set is thus consistent with that observed in DOA estimation and with

modeled MFP data (see, e.g., [Refs. 3, 23]).
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Figure 12: Minimum-Variance Method (M1=1.26; M2=0.033; M3=0.11)
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Figure 13: Bartlett Method (M1=1.03; M2=0.017; M3=0.14)
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E. EFFECT OF DATA LENGTH ON PERFORMANCE

As the length of data increases (assuming temporally stationary data
and fixed SNR), the accuracy of the estimate of spatial covariance should
improve. On the other hand, if significant non-stationarity is present, we
expect that increases in data length past a certain point (depending on SNR)
may actually degrade the accuracy of this estimate. This is the case with our
data, as may be seen in Figure 14 through Figure 16, where the ambiguity
surface for a data length of 512 shows some improvement (M1=2.2,
M3=0.015) with respect to the surface for a data length of 1024 (Figure 11),
and the size of the false peaks increases noticeably for data lengths of 2048
(M1=1.6, M3=0.019) and 4096 (M1=1.4, M3=.020). This behavior is
presumably due to surface wave effects, which are the only likely source of
temporal variability over the roughly one-second time scale involved here.
Obviously, data length can only be reduced so far before the benefits gained
by avoiding non-stationarity are outweighed by estimation errors arising
from low information-to-noise ratio. In fact, performance degradation became
evident at SNR=+10 dB when the data length was reduced to 256 points (not

shown).
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Figure 14: Data Length 512 (M1=2.2; M2=0.012; M3=0.015)
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Figure 15: Data Length 2048 (M1=1.6; M2=0.012; M3=0.019)
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 4096 pts
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Figure 16: Data Length 4096 (M1=1.4; M2=0.012; M3=0.020)

F. EFFECT OF NOISE ON PERFORMANCE

Figure 17 through Figure 19 illustrate the effect of additive noise.
These plots exhibit high false peaks compared with Figure 11 (no added
noise). Below a SNR of ~10 dB, the MUSIC method using 2nd order statistics
no longer gives the largest peak at the actual emitter location (M1=0.72 for
Figure 18). Interestingly, the MUSIC method with 4th-order statistics
actually gives poorer results than with 2nd-order statistics at all SNRs
(Figure 19 shows the 0 dB result). One reason for this somewhat surprising
result appears to be that the signal turns out to be roughly as close to
Gaussian as the additive noise, as measured by the difference between its
4th-order moment and the 4th-order moment of a Gaussian process with the
same lower-order moments (11). Specifically, let us define a measure G for

quantifying Gaussianity for the received signal as follows:
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C
G = " 4"F , (40)
| ML
where ||, indicates the Frobenius norm*, C, is defined by (14), and M, is the

matrix of 4th order moments; i.e.,
M, (;, j) = E[p.p, p;p}]-

As discussed earlier, if the processes p, are Gaussian, C,=0 and therefore
G=0. We find that, in this experiment, for noise alone, G=0.13 and for signal
alone G=0.12 (the use of different norms in (40) does not significantly affect
these values). Recall that our motivation for using higher-order statistics in
the first place was based on an expectation that the noise would be Gaussian
and the signal would not. It appears that this Gaussian property is
characteristic of the filtered M-sequence signal; for continuous wave (CW)
data gathered later in the experiment (at which time, unfortunately,

environmental measurements are not available), G is significantly higher.

* The Frobenius norm of a matrix A is defined as "A” r = 2 lAijF , Where A; are the
i _

components of A.
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Figure 17: SNR = -10 dB, 2nd order statistics
(M1=1.1; M2=0.014; M3=0.028)
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Figure 18: SNR = -11 dB, 2nd order statistics
(M1=0.72; M2=0.012; M3=0.035)
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MM, MUSIC, Modes 1-4, SNR=+0 dB, 1024 pts
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Figure 19: SNR = 0 dB, 4th order statistics
(M1=0.34; M2=0.008; M3=0.015)

A more significant flaw in the cumulant-based MUSIC estimator is
illustrated in Figure 20 through Figure 23, which show the performance of
cumulant-based MUSIC MFP versus that of conventional MUSIC MFP when
applied to a synthetic data set (no mismatch between the actual and predicted
sound fields) for SNRs of +10 dB and 0 dB. At +10 dB, the cumulant-based
method (M1=12.3) greatly outperforms the conventional method (M1=2.9).
However, at 0 dB, the conventional method is superior (M1=2.7 vs. M1=1.6),
despite the fact that the signal subspace is estimated much more accurately
for the cumulant method than for the conventional method (as quantified by
the angle between the signal subspaces at +10 dB and 0 dB). This behavior is
due to the fact that both the cumulant matrix C, and the array manifold
vectors (aca’) are defined to be real: since both MFP and MMP rely heavily on

phase information for accurate localization, use of amplitude information
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alone causes the estimators to be highly sensitive to noise-induced errors in

the estimate of C,.

MF, MUSIC, SNR=+10 dB, 1024 pts
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Figure 20: Conventional MUSIC, synthetic data
(M1=2.9, M2=0.0091, M3=0.014)
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Figure 21: Cumulant MUSIC, synthetic data
(M1=12.3, M2=0.0021, M3=0.0022)
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Figure 22: Conventional MUSIC, synthetic data
M1=2.7, M2=0.0093, M3=0.015)
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MF, MUSIC, SNR=+0 dB, 1024 pts
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Figure 23: Cumulant MUSIC, synthetic data
(M1=1.6, M2=0.0022, M3=0.015)

G. BEHAVIOR OF DIFFERENT MODE INVERSION METHODS

Figure 24 shows the result when the pseudoinverse method is used
instead of the projection method. As mentioned above, the two methods are
very similar mathematically and give about the same performance (compare
with Figure 11). The false peaks are slightly larger and more numerous with
the pseudoinverse method (M3=0.020 vs. 0.016 for the projection method).
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Figure 24: Pseudo-inverse mode filter (M1=1.7; M2=0.013; M3=0.020)

H. EFFECT OF ARRAY SHADING

Figure 25 shows the effect of not including the required sensitivity
correction for the failed hydrophones (i.e., no array shading). The higher false
peaks are apparent (M1=1.1 and M3=0.025, as compared with M1=1.7 and
M3=0.016 when shading is used).
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Figure 25: No phone sensitivity correction
(M1=1.1; M2=0.012; M3=0.025)

I. TEMPORAL VARIABILITY OF RESULTS

Figure 26 shows the results from a data segment obtained during the
first set of M-sequence transmissions. Although there is a peak at the correct
emitter location, it is not the largest peak (M1=0.46). The change in
localization performance with respect to that obtained with a data segment
from the second set of transmissions is probably due to temporal fluctuations
in the sound speed field, since none of the other physical parameters changed
significantly between the two data sets. This behavior is not surprising, since
the period of frontal motion (two hours) is much less than the time between
the sets of M-sequence transmissions. Although the plots are not shown here,
we found that the localization performance remained qualitatively the same

for all data segments within a given set of transmissions.
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 1024 pts
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Figure 26: Data from 1st transmission (M1=0.46; M2=0.015; M3=0.026)

J. EFFECT OF MODE SELECTION ON MMP RESULTS

As discussed above, it is important to choose a suitable mode subset to
ensure satisfactory results. Obviously, with 60 modes available, there is a
very large number of potential combinations, only a few of which will be
presented here. Figure 27 shows the result when only the first 3 modes are
used; a small peak is visible at the correct location (M1=0.46). Figure 28
shows the result when modes 1-5 are used; the plot shows a slight
improvement in performance compared to the result with modes 1-4 (M1=1.8
and M3=0.015 vs. 1.7 and 0.016, respectively). Using more than the first five
modes tends to increase the number and size of the false peaks. Figure 29

(modes 1-6 used) shows this effect (M1=1.3, M3=0.018).
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Figure 27: Modes 1-3 (M1=0.46; M2=0.0070; M3=0.025)
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Figure 28: Modes 1-5 (M1=1.8; M2=0.011; M3=0.015)
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MM, MUSIC, Modes 1-6, SNR=+10 dB, 1024 pts
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Figure 29: Modes 1-6 (M1=1.3; M2=0.011; M3=0.018)

K. EFFECT OF MODEL SELECTION ON PERFORMANCE

Figure 30 shows the result when the mode coupling accounted for by
the BBCM method is not included in calculation of the replica fields, that is,
when the range dependence of the replica fields arises only from the range
dependence of the mode functions and wavenumbers (the adiabatic
approximation of (22)). There is no indication of a peak at or near the actual
emitter location, so the performance measures M1, M2, M3 are meaningless

and are not provided.
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Figure 30: Adiabatic model

71



72




V. CONCLUSIONS

The results presented in the body of this dissertation clearly
demonstrate that MUSIC-based MMP techniques may be effectively
employed even in a very challenging acoustic environment such as that which
existed during the Barents Sea Polar Front Experiment. It is appropriate to
review some of the unique features of this environment (as compared to

idealized numerical simulations or simple experiments):

e Strong range dependence of bathymetry and the sound speed field

(which included a strong, rapidly moving front);

® A degraded receive array spanning about half the water column
and having many fewer elements than the number of modes

supported by the channel,

¢ Relatively coarse sampling of the sound speed field (only about once

per 10 km interval, notwithstanding the presence of a front);

Despite these challenges, we achieved considerable success with our
localization approach. Some of the specific findings and original contributions

of this research are:

¢ Contrary to much conventional wisdom, the subspace-based MUSIC
method produced good results despite the inaccuracies inherent in
experimental data. In fact, the MUSIC algorithm’s high resolution
was vital to accurate localization, because the receive array was

relatively short and few robust modes were available.
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e The Broad Band Coupled Mode (BBCM) model generates replica
fields with sufficient accuracy to allow localization via MMP in this
strongly range-dependent environment. The adiabatic approxima-

tion was found to be grossly inadequate for this environment.

e The cumulant-based MUSIC estimator used in this dissertation
was too sensitive to noise-induced and model-induced estimation
errors to be useful with real data. This behavior was due to the fact
that the cumulant matrix and the replica fields were defined as real
quantities; thus, the phase information, which is vital to robust and

accurate localization, was not available.

e In an environment with strong temporal variability, localization

performance can vary drastically over relatively short time scales.

In summary, our approach, which combined the high-resolution MUSIC
algorithm with MMP, allowed accurate localization estimates, even though

only a few robust modes could be obtained via mode filtering.

The approach used in our analysis may be modified in three obvious
respects, each of which offers potentially significant improvement in

localization performance and is worthy of further study.

The first modification relates to the assumptions concerning
observation noise. The basic MUSIC algorithm used in our research assumes
that the noise covariance is some multiple of the identity matrix (i.e.,
spatially isotropic). As mentioned earlier, the MUSIC algorithm may be
extended to the case where the noise is not isotropic via use of a generalized

eigendecomposition. Use of this extended MUSIC algorithm has the potential

74




-

to further lower the SNR threshold (the SNR above which the estimator

performs satisfactorily) observed in our results.

A second way to improve localization performance involves
modification of our cumulant-based MUSIC estimator. We noted earlier that
an extended version of the cumulant matrix has been defined [Ref. 20].
Although an estimator based on this matrix would be more computationally
intensive than the estimator defined here, it is expected to be less sensitive to

estimation errors.

Refinement in the process of selecting suitable modes for MMP
localization is a third means of improving the estimator. Although the simple
approach described here was effective in generating an appropriate mode set
for this environment, it may not produce results of the same quality in other
environments. An approach relying more heavily on the propagation physics
of the channel could greatly reduce the amount of “trial and error” involved in

the process.
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